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It is well known that the imposing of boundary conditions (BC) at the outer sample 
boundaries leads to an infinite speed of propagation of heat. Although any finite 
temperature difference is propagated with a finite velocity, the temperature history 
at a given point does not in general reflect the correct layer sequence. In order to 
overcome this non-physical description, we treat two simple examples as Stefan 
problems (moving BC at the propagation front). 

Thermal investigations of layered materials have been applied successfully to the 
evaluation of  a wide range of materials, such as thin films (coatings) [1, 2], 
semiconductor devices [3~5] and even living human skin [2]. They provide a 
powerful tool for non-destructive material testing and for semiconductor 
engineering, an interesting supplement and/or alternative for electrical and optical 
measurements. 

In semiconductor injection laser diodes, heat can be generated by current 
through the pn junction, while the heat transfer is detected via the temperature- 
dependence of the junction voltage drop [4, 5, 7]. In recent measurements [4, 5], 
characteristic structures of this temperature history have been observed, which are 
empirically connected with the crossing of  an interface by the heat propagation 
front. 

On the other hand, the theoretical modelling, e.g. [2, 6, 8], uses the classical 
diffusion theory of Fourier [9], which deals with spatial diffusion modes extending 
over the whole sample. It is well known that the distant boundary conditions (BC) 
at the sample boundaries imply an infinite speed of heat propagation (in order to 
"feel" them instantaneously at the heat source). And although the spatial heat 
propagation can be recovered by the temperature rise after power supply at 
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different loci in the sample [10], the temperature history at the source will, in 
general, not reflect the proper layer sequence in multilayer stacks. This is 
exemplified in the following section. 

Therefore, we shall show that the terms in the Fourier series often do not sum up 
to the correct heat propagation through layer by layer; in other words, the diffusion 
modes (reflecting collective stack properties) do not superpose to the physically 
correct picture of a moving front of propagation [6, 11]. 

Consequently, this front of propagation has to be imposed from the very 
beginning, i.e. via a moving BC, as in the Stefan problems [12]. In this paper, we 
consider the linear single-layer and the two-layer problem, with special attention to 
cusp-like structures in the surface temperature history and applying the heat- 
balance integral method [13]. Throughout, we assume the quasi-one- 
dimensionality of heat transfer. 

The failure of Fourierean diffusion theory 

Let us consider a stack of 8 homogeneous layers, the data on which are listed in 
Table 1, without interface resistances. Heat is supplied by a Dirac pulse of energy 
flux density Q~o on the surface of layer 1 (x = 0). The rear surface (layer 8) is 
thermally isolated. Thus, we imagine pulsed photothermal inspection of this 
GaAIAs chip. 

We have calculated [6] the apparent effusivity [2] 

e(t) = Oso/T(O, t) x/~tt (1) 

because this displays much more pronounced structures than the surface 
temperature history, T(0, 1), itself [6] (cf. [2], Figs 9 and 10). The result is shown in 
Fig. 1. More than 3000 terms are included in the Fourier series (the solution of the 

Table 1 Mate r i a l  cons tan t s  o f  the e ight - layer  mode l  [6] 

i, l ayer  d i, 10 -6  m u i, 10 -~ m z s -~ ki ,  W m  -~ deg -~ 

I 90 23.7 41.5 

2 2 7.06 12 

3 0.2 11.6 20 

4 1.3 7.06 12 

5 0.8 23.7 41.5 

6 0.2 5.0 10 

7 0.7 33.3 100 

8 I 1 15 26 
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Fig. 1 Apparent effusivity for the eight-layer stack [6] 
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transcendent eigenvalue equation for the decay constants of the diffusion modes 
was circumvented by employing their asymptotic behaviour [6, 14]). The plateau of 
e(t) below t ~ 0.1 ns was achieved, which proves the convergence of the series used. 

However, the first deviation from this plateau (representing the behaviour of a 
homogeneous semi-infinite probe [2]) stems not from the second layer of the stack, 
but from the third one. Generally, it can be shown [14] that it arises from the layer 
with the smallest value of r/i = di/~]/2 , where di and x~ are the thickness and the 
thermal diffusivity of  the i-th layer, respectively. And this is independent of the 
position of this layer within the stack ! This is the main reason for our criticism of 
distant BC for general multilayer systems. 

Correspondingly, the temperature vs. time curve at the pn junction (electrical 
heating) calculated in this way [6, l l] does not obey the cusp-like structures 
observed experimentally [4, 5]. Similarly, the experimental surface temperature 
history of the three-layer model (living human skin) in [2], when appropriately 
redrawn in a log-log scale, shows much sharper structures than the theoretical curve 
(cf. Fig. 9 in [2]) [5]. 

Moving boundary condition. Single-layer case 

Let us consider the following problem: 

T,(x, t) = ~Txx(x, t), O<~x<.d 

T (x ,  O) = O, O<~x<.d 

Tx(0, t) = - f  = const < 0 

(2) 

(3) 

(4) 
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T(x ,  t) = O, Xo(t)<~ x<<.d 

-~:Tx(x  o, t) = YcoT(xo, t) 

T~(xo, t) = 0 

T~x(Xo, t) = 0 

(5) 

(6) 

(7) 

(8) 

0 ~< t ~< t 1. Here, Xo(t ) is the position of  the propagation front (penetration distance) 
at time t, Xo(0) = 0 ~< Xo(t) <<. d = Xo(tl). T~ = ~T/at, etc., Xo = dxo/dt. (6) expresses 
the moving BC and guarantees the total energy conservations. (7) follows from (5) 
and (6). The smoothness condition (8) is derived by differentiation of  (5) with 
respect to time and using (2) and (7) [13]. 

Equations (2) to (8) describe the first stage, 0 ~< t ~< tl ,  where the heat supplied at 
x = 0 moves to the rear surface at x =  d; but T(x ,  t) = 0 for x >>. Xo(t), the rear 
surface is not "felt", and the problem is that of  a semi-infinite sample. 

Following Goodman [13], we solve it approximately by means of the heat- 
balance integral, 

S~ Tt (x' t) dx  = d o  ~ ~o xo T (x, t) dx  = ~ ! Txx(x, t) dx  = ~:f (9) 

which replaces the local balance relation (2) by the global one; the former will 
therefore be fulfilled only on average. 

A reasonable approximation is the cubic profile 

T(x ,  t) = f x o ( t ) [ 1 -  X/Xo(t)] 3 (10) 

satisfying (3) to (5), (7) and (8). Inserting (10) into (9) yields 

Xo(t ) = lx/]~ , O<~t<<.t I ( l l )  

and 

t 1 = d2/12~ (12) 

The surface temperature increases according to 

T(0, t) = Xo(t) f /3  = 2 f  x//-~-/3 (13) 

As noted by Goodman [13], the factor 2/x/~ differs by only 2% from the "exact" 

one, 2/x//-~ -, of  the "classical" result for T (0, t). The latter, however, imposes the 
distant BC T ( ~ ,  t) = 0, and not (5) (which is indeed not fulfilled by it), and is 
therefore not an exact measure of  comparison. 
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In the second stage, t >>. q ,  xo( t )  stays at d, where we assume the isothermal BC 

T(d, t) = 0 (14) 

and Eqs (2) to (9), except (7), remain valid, replacing Xo by 1. The corresponding 
cubic temperature profile is then [13] 

= _ + 1  T(0, t)](1 d )  3 (15) 

T(O, t) = f d  1 -  - ~ e x p { - ( t - q ) / 5 q }  , t>~q (16) 

Formula (16) approximates the first two terms of the corresponding Fourier series 
with the correct values for t = t~ and t = o% cf. [10]. 

According to (13) and (16), we obtain an angle in the T(0, t) curve at t = q ,  since 

T , ( O , t , - O )  = 2f~  > Tl (0 ,  t 1 + 0 )  = 1.6fff (17) 

Of course, both numerical values are approximative ones, but it is obvious that the 
shape of the curve T(0, t) must change at t = t l ,  namely from the square-root 
increase (13) to a saturation-like one (16). This behaviour is more pronounced when 
the concept of  penetration distance (moving BC) is used for the first stage. 
Moreover, the correlation between the spatial and temporal particularities is 
guaranteed by the construction. 

Moving boundary condition. Two layers 

Let us now study the effet of a heterointerface (without thermal resistance). 
During the penetration of heat into the first layer (first stage), the problem is 
identical to the single-layer case (all parameters will be labelled by 1). 

When t = t 1 , Xo( t l )  = d l ,  the propagation front crosses the interface and changes 
its penetration law. We describe this second stage by means of the heat-balance 
integral method [13], too. 

Since the choice of the approximative temperature profile is not unique, we must 
proceed intuitively, guided by physical requirements such as the continuity of 
temperature and heat flow at the interface: 

T I ( d  1, t) = T2(d l ,  t) (18) 

k x T ~ x ( d  a, t) = k 2 T 2 x ( d , ,  t) (19) 
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where k is the heat conductivity, Furthermore, the solution for the second stage 
should go over into that for the first one if the material constants of the two layers 
are the same. 

A simple ansatz to satisfy all this is (cf. Fig. 2) 

E 
k z > k l  

-".='"'lit) 

~x,(t) ip- Second stage 

t~ t 

x" 
I-- 

T(O,t) k~ > k~ 
t :> t~ , fixed 

,t) 

f 

0 d~ x~ X 2 X 

Fig. 2 a) Penetration distances during the second stage: the apparent one for the first layer, x~(t), and 
the true one, x2(t); b) cubic temperature profiles for the second stage 

1 ~'A (t)(1 - x / x , ( t ) )  3, 
T (x, t) = ~ f d  I x~_dl 

(B(t)(1 - x / x 2 ( t ) )  3, ] 

Inserting (20) into (4), (18) and (19), we get 

Hence, 

A ( t )  = x l ( t ) / d l  

B ( t )  = A (t)(l - dx/xa)a/(1  - d l / x 2 )  3 

B ( t )  = A ( t ) k xx2 (1  - d l / x x ) Z / k 2 x l ( l  - d l / x 2 )  2 

kl(X2 _l)= xl 

(20) 

(21) 

(22) 

(23) 

(24) 
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The fourth relation needed is provided by the heat-balance integral 

dl xz 
Pl ! Tt(x, t ) d x + p 2  ~, Tt(x, t) dx  = k l f  (25) 

where p = k/x  denotes the heat capacity per volume and (4), (7) and (19) have been 
used. With (20) to (24), this gives 

x:~ (e2 2 ) (  d,~" l 12xtt 12t 
-~x L 1 + - 1 1 . . . . .  T ,  = d ] / •  (26) 

ke~ X1/ J a~ T 1 ' 

where e~ = ~-~01 is the material effusivity. For el =e2,  formula (26) goes over into 
(11), as required; for x2 = xl( = xo(t)), k z = k l  is also necessary, see (24). 

Stage 2 lasts from t I to tz, defined by x2(t2) = d = d l  + d2 and calculated via (26) 
from x~(t2), given through (24) as 

Xl(t2) l -{- kl ( d ) 
dt - ~ \&-t - 1_ (27) 

The surface temperature history is described by 

T(0, t) = f x l ( t ) ,  ta<~t<~t 2, x l ( t l )  = Xo(q) = da (28) 

Hence, its smoothness at t = tt is determined by that of  X~(o). From (26) it follows 
that 

:to(t0 = :~l(tx) (29) 

Though the time-dependence of the penetration distance changes. Consequently, 

'~ 1.110q 

100, . . . . .  T - -  

~ a s ~  ~''stage 

0.001q0.04 1.00 15~.00 t 
T(O,t)/3fd~ 

Fig.  3 Su r f ace  t e m p e r a t u r e  h i s to ry ,  Eqs  (13) a n d  (28). d 2 = 3 0 d  1 = 3 m m ,  k 2 = 5k I = 70 W / d e g  m,  

P2 = P i  = 3.9 J / d e g  c m  3, t 1 = 4 .64  x 10 -5  s ( N i - C r  o n  steel, cf.  [2]) 
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within this approximation, the interface crossing of  the propagation front does not 
cause a sharp structure (angle) in T (0, t), see fig. 3. 

I f e 2 > e l ,  T(0, t) will rise more slowly for t>~t 1 than for t<<,tl, since relatively 
more heat is conducted into layer 2, and vice versa. It is remakable that, within the 
present approximation, the interface crossing is not reflected in T(0, t), if p2 ~p~ 

and k2 ~ k t ,  but p2k2 = P l k l  ("degeneracy"). 

Conclusions 

We have demonstrated that the "classical" Fourierean diffusion theory working 
with diffusion modes extended over the whole sample is, in general, not able to 
reflect the actual layer sequence in the surface temperature history. Consequently, a 
correct interpretation of  photothermal data, for example, is possible only in some 
special cases. 

On the other hand, the concept of  penetration distance leads to solutions which 
incorporate by construction a front of  heat propagation. Consequently, the surface 
temperature history displays structures, the temporal sequence of which is 
immediately related to the layer sequence of  the stack under consideration. 

The heat-balance integral method seems to provide a useful tool for solving this 
Stefan-like problem for multilayer systems, too, but eventually more sophisticated 
trial profiles than (20) are in order for higher accuracy, cf. [13]. 

When heat is generated within the sample, as, for example, in laser diodes, 
"interference" effects from interface crossings in opposite directions should occur. 
Further complications arise when the heat transfer is essentially more- 
dimensional [13]. 

The author is very indebted to Dr. W. Both for useful discussions and for providing his results prior to 
publication, and also to Dr. P. Schmidt and Dr. W. Nakwaski for helpful comments. 
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Zasammenfassung - -  Wie bekannt, hat die Festlegung von Randbedingungen (BC) an den/iusseren 
Grenzen einer Probe eine unendliche Wgtrmeausbreitungsgeschwindigkeit zur Folge. Obwohl sich 
jeglicher endlicher Temperaturunterschied mit endlicher Geschwindigkeit ausbreitet, spiegelt der 
Temperaturverlauf an einem gegebenen Ort im allgemeinen die korrekte Schichtensequenz nicht wider. 
Zur Ausmerzung dieser unphysikalischen Beschreibung wurden zwei einfache Beispiele als Stefan- 
Problem (bewegliche BC an der Ausbreitungsfront) behandelt. 

P e 3 m M e  - -  Xopomo H3BeCTHO, qTO Ha21o~eHHe rpaHHqHblX yc.~OBHfi Ha anemnne rpaHnnm paaae~a 
o6paatla HpHBoRI4T K 6eCKOHCqHOfi cKopOGTH pagnpocTpaHeHH~ TeHAa. XOTR KaKOC-flH60 TOK~OBOr 
paa~H~Ine pacnpocTpaHaeTca c KOHeqHOfi CKOpOCTbtO, TeH.IIOBOe [zpoHcxo~irdleHHe npu ~aHHOfi TOqKe, B 
o6meM, He oTpaxacT HCTHHHyIO HOCYle~OBaTeJlbHOCTb C21Og. ]30 lt36exaHHe 3TOre He CI)H3HqCGKOFO 
OHHCaHH$1, aBTophl nposeiIH o6pa6oTKy ~syx npOCThlX npHMepos B SHale 3a~aqH CTe~aHa (11BHXeHHe 
rpaHnqHblX ycYiOB~lfi BO ~pOHTe pacnpocTpaHeHHl~). 
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